Sangaku Journal of Mathematics (SJM) ©CSJM
ISSN 2534-9562
Volume 7 (2023), pp.21-28
Received 23 March 2023 Published on-line 30 April 2023
web: http://www.sangaku-journal.eu/
(c)The Author(s) This article is published with open access ${ }^{11}$

Solution of Problem 2023-1-6

${ }^{a}$ Ercole Suppa and ${ }^{b}$ Marian Cucoanes
${ }^{a}$ Via B. Croce 54, 64100 Teramo, Italia
e-mail: ercolesuppa@gmail.com
${ }^{b}$ Focsani, Vrancea, Romania.
email: gabrielacucoanes@yahoo.com

Abstract

A solution of Problem 6 in [3] and some related results are given.

Mathematics Subject Classification (2010). 01A27, 51M04.

1. Introduction

In this paper we prove a generalization of Problem 6 in [3] and also present some related results.

Problem. For a triangle $A B C$, assume that there is a circle of radius ρ_{a} touching $C A$ and $A B$ from inside of $A B C$ and the semicircle of diameter $B C$ externally. Similarly there is a circle of radius ρ_{b} touching $A B$ and $B C$ from inside of $A B C$ and the semicircle of diameter $C A$ externally. There also is a circle of radius ρ_{c} touching $B C$ and $C A$ from inside of $A B C$ and the semicircle of diameter $A B$ externally (see Figure 1). Then show that the inradius of the triangle $A B C$ equals

$$
\frac{1}{2}\left(\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}\right) .
$$

2. Generalization

The problem is generalized as follows:
Theorem 2.1. Let $A B C$ be a triangle and assume, without loss of generality, that angles with vertices at B and C are acute. We denote by ω_{a} the circle of radius ρ_{a} touching the semicircle of diameter BC constructed on the same side as the point A externally if $\angle B A C<90^{\circ}$ otherwise internally, where ω_{a} touches the sides $C A$ and $A B$ if $\angle B A C<90^{\circ}$ otherwise it touches the lines $C A$ and $A B$

[^0]from the side opposite to the incircle of ABC. Similarly we define $\omega_{b}, \rho_{b}, \omega_{c}, \rho_{c}$. Then the inradius of $A B C$ equals
\[

$$
\begin{equation*}
\frac{1}{2}\left(\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}\right) \text { if } A B C \text { is acute. } \tag{1}
\end{equation*}
$$

\]

$$
\begin{equation*}
\frac{1}{2}\left(-\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}\right) \text { if } \angle C A B \geq 90^{\circ} \tag{2}
\end{equation*}
$$

Figure 1.

Figure 2.

3. Proof of Theorem 2.1

For a triangle $A B C$, let $a, b, c, R, r, p, \Delta, I$, be the lengths of $B C, C A, A B$, the circumradius, the inradius, the semiperimeter, the area, the incenter, respectively. In the proof of Theorem 2.1 we will use the following lemmas.

Lemma 1. The following identity holds:

$$
\left(b+c+\frac{a r}{p-a}\right)^{2}-2\left(b^{2}+c^{2}-a^{2}\right)=\left(a+\frac{(b+c) r}{p-a}\right)^{2}
$$

Proof. Using Heron's formula $\Delta=\sqrt{p(p-a)(p-b)(p-c)}$, and the well known identity $r=\frac{\Delta}{p}$, we have

$$
\begin{aligned}
& \left(b+c+\frac{a r}{p-a}\right)^{2}-\left(a+\frac{(b+c) r}{p-a}\right)^{2} \\
= & \left(b+c+a+\frac{r(a+b+c)}{p-a}\right)\left(b+c-a-\frac{r(b+c-a)}{p-a}\right) \\
= & 4 p(p-a)\left(1+\frac{r}{p-a}\right)\left(1-\frac{r}{p-a}\right) \\
= & 4 p(p-a)-\frac{4 p}{p-a} \cdot \frac{(p-a)(p-b)(p-c)}{p} \\
= & (a+b+c)(b+c-a)-(a-b+c)(a+b-c) \\
= & (b+c)^{2}-a^{2}-a^{2}+(b-c)^{2}=2\left(b^{2}+c^{2}-a^{2}\right) .
\end{aligned}
$$

Lemma 2. The radius ρ_{a} of the circle ω_{a} defined in Theorem 2.1, is given by the formula

$$
\rho_{a}= \pm r\left(1-\tan \frac{A}{2}\right),
$$

where the + sign is taken if $\angle B A C \leq 90^{\circ}$ and the - sign is taken if $\angle B A C>90^{\circ}$. Similar formulas hold for the radii ρ_{b} and ρ_{c} defined in the same way.

Proof. Let M be the midpoint of $B C$; let D be the center ω_{a}; let E, G be the orthogonal projections of D on $A C, A B$, respectively; let J be the touch point of the incircle with the side $A C$. Let us first consider the case $\angle B A C \leq 90^{\circ}$. If $\angle B A C=90^{\circ}$ the circle ω_{a} reduces to a point, therefore $\rho_{a}=0$ and the formula is verified since $\tan \frac{A}{2}=1$. Therefore assume that $\angle B A C<90^{\circ}$ (see Figure 3).

Figure 3.
Since A, D, I are collinear we have $\angle G A D=\angle D A E=\frac{A}{2}$, so

$$
A J=r \cot \frac{A}{2}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}} \cdot \sqrt{\frac{p(p-a)}{(p-b)(p-c)}}=p-a
$$

Denote $A E=A G=x$. From the similarity of the triangles $A J I$ and $A E D$ we get

$$
\frac{r}{p-a}=\frac{\rho_{a}}{x} \quad \Leftrightarrow \quad \rho_{a}=\frac{r}{p-a} \cdot x .
$$

In the triangle $B D G$, since $\angle B G D=90^{\circ}$, we have

$$
B D^{2}=B G^{2}+G D^{2}=(c-x)^{2}+\rho_{a}^{2}
$$

In the triangle $C E D$, since $\angle C E D=90^{\circ}$, we have

$$
C D^{2}=C E^{2}+E D^{2}=(b-x)^{2}+\rho_{a}^{2}
$$

Since the circle (D) and the semicircle of diameter $B C$ are externally tangent, we have $D M=\frac{a}{2}+\rho_{a}$. Then, using the median formula in triangle $B C D$ we get

$$
\begin{gather*}
4 \cdot D M^{2}=2 \cdot B D^{2}+2 \cdot C D^{2}-B C^{2} \quad \Leftrightarrow \\
4\left(\frac{a}{2}+\rho_{a}\right)^{2}=2\left((c-x)^{2}+\rho_{a}^{2}\right)+2\left((b-x)^{2}+\rho_{a}^{2}\right)-a^{2} \Leftrightarrow \\
x^{2}-\left(b+c+\frac{a r}{p-a}\right) x+\frac{b^{2}+c^{2}-a^{2}}{2}=0 \tag{3}
\end{gather*}
$$

Taking into account of Lemma 1, the discriminant of (3) equals to

$$
\left(b+c+\frac{a r}{p-a}\right)^{2}-2\left(b^{2}+c^{2}-a^{2}\right)=\left(a+\frac{(b+c) r}{p-a}\right)^{2} .
$$

Therefore the solutions of (3) are

$$
x=p-a-r<p-a \quad \text { and } \quad x=p+\frac{p r}{p-a}>p-a .
$$

Since $E \in A J$ and $A J=p-a$ we have $A E<A J$, i.e. $x<p-a$. Hence we have

$$
\rho_{a}=\frac{r}{p-a} \cdot x=\frac{r}{p-a}(p-a-r)=r\left(1-\frac{r}{p-a}\right)=r\left(1-\tan \frac{A}{2}\right) .
$$

The other case $\angle B A C>90^{\circ}$ can be proved similarly, taking into account that $D M=\frac{a}{2}-\rho_{a}$ because the circle (D) and the semicircle of diameter $B C$ are internally tangent (see Figure 4).

Figure 4.

Lemma 3. The numbers $\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are the roots of the cubic

$$
p x^{3}-(4 R+r) x^{2}+p x-r=0 .
$$

Proof. The numbers $\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ verify the equation

$$
\begin{gather*}
\left(x-\tan \frac{A}{2}\right)\left(x-\tan \frac{B}{2}\right)\left(x-\tan \frac{C}{2}\right)=0 \Leftrightarrow \\
x^{3}-\left(\sum \tan \frac{A}{2}\right) x^{2}+\left(\sum \tan \frac{A}{2} \tan \frac{B}{2}\right) x-\prod \tan \frac{A}{2}=0 . \tag{4}
\end{gather*}
$$

Now, using the well known identities ${ }^{2}$

$$
\sum \tan \frac{A}{2}=\frac{4 R+r}{p}, \quad \sum \tan \frac{A}{2} \tan \frac{B}{2}=1, \quad \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}=\frac{r}{p},
$$

[^1]the equation (4) rewrites as
\[

$$
\begin{gather*}
x^{3}-\frac{4 R+r}{p} \cdot x^{2}+x-\frac{r}{p}=0 \quad \Leftrightarrow \\
p x^{3}-(4 R+r) x^{2}+p x-r=0 . \tag{5}
\end{gather*}
$$
\]

Proof of Theorem 2.1. Let us first consider the case $\angle B A C \leq 90^{\circ}$.
From Lemma 2 we get $\rho_{a}=r\left(1-\tan \frac{A}{2}\right)$, hence $\tan \frac{A}{2}=1-\frac{\rho_{a}}{r}$.
Thus, using Lemma 3 we have that

$$
p\left(1-\frac{\rho_{a}}{r}\right)^{3}-(4 R+r)\left(1-\frac{\rho_{a}}{r}\right)^{2}+p\left(1-\frac{\rho_{a}}{r}\right)-r=0
$$

from which we get

$$
\begin{gathered}
p\left(r-\rho_{a}\right)^{3}-r(4 R+r)\left(r-\rho_{a}\right)^{2}+p r^{2}\left(r-\rho_{a}\right)-r^{4}=0 \\
p \rho_{a}^{3}+r(4 R+r-3 p) \rho_{a}^{2}+2 r^{2}(2 p-4 R-r) \rho_{a}+2 r^{3}(2 R+r-p)=0 .
\end{gathered}
$$

Therefore ρ_{a} and similarly ρ_{b}, ρ_{c} satisfy the equation

$$
p x^{3}+r(4 R+r-3 p) x^{2}+2 r^{2}(2 p-4 R-r) x+2 r^{3}(2 R+r-p)=0 .
$$

Thus, using the Vieta's formulas we obtain

$$
\begin{equation*}
\rho_{a}+\rho_{b}+\rho_{c}=\frac{r(3 p-4 R-r)}{p} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \rho_{a} \rho_{b}=\frac{2 r^{2}(2 p-4 R-r)}{p} \tag{7}
\end{equation*}
$$

from which it follows that

$$
\begin{align*}
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2} & =\left(\rho_{a}+\rho_{b}+\rho_{c}\right)^{2}-2 \sum \rho_{a} \rho_{b} \tag{8}\\
& =\frac{r^{2}(3 p-4 R-r)^{2}}{p^{2}}-2 \cdot \frac{2 r^{2}(2 p-4 R-r)}{p} \\
& =\frac{r^{2}(p-4 R-r)^{2}}{p^{2}} .
\end{align*}
$$

Finally, using (6), (7) and (8) and taking into account the inequality ${ }^{3} 4 R+r>p$, we have

$$
\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}=\frac{r(3 p-4 R-r)}{p}+\frac{r(4 R+r-p)}{p}=2 r .
$$

so the formula (1) is proved.
Let us now consider the case where $\angle B A C>90^{\circ}$.
From Lemma 2 we get $\rho_{a}=r\left(\tan \frac{A}{2}-1\right)$, hence $\tan \frac{A}{2}=1+\frac{\rho_{a}}{r}$. Thus, with a reasoning similar to that used in case $\angle B A C<90^{\circ}$, it can be shown that $-\rho_{a}, \rho_{b}$ and ρ_{c} verify the equation

$$
\begin{equation*}
p x^{3}+r(4 R+r-3 p) x^{2}+2 r^{2}(2 p-4 R-r) x+2 r^{3}(2 R+r-p)=0 . \tag{9}
\end{equation*}
$$

[^2]Therefore by using the Vieta's formulas we obtain

$$
\begin{align*}
-\rho_{a}+\rho_{b}+\rho_{c} & =\frac{r(3 p-4 R-r)}{p}, \tag{10}\\
\rho_{b} \rho_{c}-\rho_{a} \rho_{b}-\rho_{a} \rho_{c} & =\frac{2 r^{2}(2 p-4 R-r)}{p}, \tag{11}\\
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2} & =\frac{r^{2}(p-4 R-r)^{2}}{p^{2}} \tag{12}
\end{align*}
$$

from which it follows that

$$
\begin{equation*}
-\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}=\frac{r(3 p-4 R-r)}{p}+\frac{r(4 R+r-p)}{p}=2 r . \tag{13}
\end{equation*}
$$

4. Construction of circle ω_{a}

The construction of the circle ω_{a} follows from the following theorem.
Theorem 4.1. For a triangle $A B C$, let ω_{a} be the circle defined in Theorem 2.1. Let I be the incenter of $A B C$ and let J, E be the feet of the perpendiculars drawn on $A C$ from I and D, respectively. We have $J E=J I$.

Figure 5.

Proof. If $\angle A<90^{\circ}$, from Lemma 2 we have $D E=r\left(1-\tan \frac{A}{2}\right)$. Therefore

$$
\begin{aligned}
J E & =A J-A E=\frac{r}{\tan \frac{A}{2}}-\frac{D E}{\tan \frac{A}{2}} \\
& =\frac{r-D E}{\tan \frac{A}{2}}=\cot \frac{A}{2}\left(r-r+r \tan \frac{A}{2}\right) \\
& =r \cot \frac{A}{2} \tan \frac{A}{2}=r=J I .
\end{aligned}
$$

If $\angle A>90^{\circ}$ the proof is similar.
The circle ω_{a} can be constructed in the following way (see figures 5 and 6) :

Figure 6.

- construct the incenter I of $A B C$;
- construct the point J, orthogonal projection of I on $A C$;
- construct the point $E \in A J$ such that $J E=J I$;
- let D be the intersection point of $A I$ with the perpendicular to $A C$ at E;
- draw the circle ω_{a} with center D and radius $D E$.

The following corollary follows directly from theorem 4.1.
Corollary 4.1. Let $A B C$ be a triangle, let D, E, F be the centers of $\omega_{a}, \omega_{b}, \omega_{c}$ respectively; let E_{a}, F_{a} be the feet of the perpendiculars drawn on $B C$ from E and F, respectively. Define D_{b}, F_{b} and D_{c}, E_{c} cyclically. Then the six points E_{a}, F_{a}, D_{b}, F_{b}, D_{c}, E_{c} lie on a circle with center I and radius $\sqrt{2} r$. Furthermore we have $E_{a} F_{a}=D_{b} F_{b}=D_{c} E_{c}$ (see figures 7 and 8).

Figure 7.

Figure 8.

References

[1] T. Andreescu, O. Mushkarov, Topics in geometric inequalities, XYZ Press, LLC, TX 75025, USA, 2019.
[2] O. Bottema, R. Djordević, Janić, Mitrinović, Vasić Geometric inequalities, Wolters-Noordhoff Publishing, Groningen 1969.
[3] H. Okumura, Problems 2023-1, Sangaku J. Math., 7(2023) 9-12.
[4] E. Suppa, Problem 11906, Romantics of Geometry Facebook Group, March 5, 2023. https://www.facebook.com/groups/parmenides52/posts/5978103605636629/.
[5] E. Suppa, Problem 11953, Romantics of Geometry Facebook Group, March 10, 2023. https://www.facebook.com/groups/parmenides52/posts/5995654653881524/.
[6] V. GH Vodă, Vraja Geometriei demodate, Editura Albatros, Bucureşti 1983.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

[^1]: ${ }^{2}$ See [2] pag.27, 1] pag. 358, 6] pag. 234, 237

[^2]: ${ }^{3}$ See [2], pag. 49

