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1. Introduction

In this paper we prove a generalization of Problem 6 in [3] and also present some
related results.

Problem. For a triangle ABC, assume that there is a circle of radius ρa touching
CA and AB from inside of ABC and the semicircle of diameter BC externally.
Similarly there is a circle of radius ρb touching AB and BC from inside of ABC
and the semicircle of diameter CA externally. There also is a circle of radius ρc
touching BC and CA from inside of ABC and the semicircle of diameter AB
externally (see Figure 1). Then show that the inradius of the triangle ABC equals

1

2

(
ρa + ρb + ρc +

√
ρ2
a + ρ2

b + ρ2
c

)
.

2. Generalization

The problem is generalized as follows:

Theorem 2.1. Let ABC be a triangle and assume, without loss of generality,
that angles with vertices at B and C are acute. We denote by ωa the circle of
radius ρa touching the semicircle of diameter BC constructed on the same side
as the point A externally if ∠BAC < 90◦ otherwise internally, where ωa touches
the sides CA and AB if ∠BAC < 90◦ otherwise it touches the lines CA and AB

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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from the side opposite to the incircle of ABC. Similarly we define ωb, ρb, ωc, ρc.
Then the inradius of ABC equals

(1)
1

2

(
ρa + ρb + ρc +

√
ρ2
a + ρ2

b + ρ2
c

)
if ABC is acute.

(2)
1

2

(
−ρa + ρb + ρc +

√
ρ2
a + ρ2

b + ρ2
c

)
if ∠CAB ≥ 90◦.

Figure 1. Figure 2.

3. Proof of Theorem 2.1

For a triangle ABC, let a, b, c, R, r, p, ∆, I, be the lengths of BC, CA, AB, the
circumradius, the inradius, the semiperimeter, the area, the incenter, respectively.
In the proof of Theorem 2.1 we will use the following lemmas.

Lemma 1. The following identity holds:(
b+ c+

ar

p− a

)2

− 2
(
b2 + c2 − a2

)
=

(
a+

(b+ c)r

p− a

)2

.

Proof. Using Heron’s formula ∆ =
√
p(p− a)(p− b)(p− c), and the well known

identity r = ∆
p

, we have(
b+ c+

ar

p− a

)2

−
(
a+

(b+ c)r

p− a

)2

=

(
b+ c+ a+

r(a+ b+ c)

p− a

)(
b+ c− a− r(b+ c− a)

p− a

)
= 4p(p− a)

(
1 +

r

p− a

)(
1− r

p− a

)
= 4p(p− a)− 4p

p− a
· (p− a)(p− b)(p− c)

p

= (a+ b+ c)(b+ c− a)− (a− b+ c)(a+ b− c)
= (b+ c)2 − a2 − a2 + (b− c)2 = 2

(
b2 + c2 − a2

)
. �
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Lemma 2. The radius ρa of the circle ωa defined in Theorem 2.1, is given by the
formula

ρa = ±r
(

1− tan
A

2

)
,

where the + sign is taken if ∠BAC ≤ 90◦ and the − sign is taken if ∠BAC > 90◦.
Similar formulas hold for the radii ρb and ρc defined in the same way.

Proof. Let M be the midpoint of BC; let D be the center ωa; let E, G be the
orthogonal projections of D on AC, AB, respectively; let J be the touch point
of the incircle with the side AC. Let us first consider the case ∠BAC ≤ 90◦. If
∠BAC = 90◦ the circle ωa reduces to a point, therefore ρa = 0 and the formula
is verified since tan A

2
= 1. Therefore assume that ∠BAC < 90◦ (see Figure 3).

Figure 3.

Since A, D, I are collinear we have ∠GAD = ∠DAE = A
2
, so

AJ = r cot
A

2
=

√
(p− a)(p− b)(p− c)

p
·

√
p(p− a)

(p− b)(p− c)
= p− a.

Denote AE = AG = x. From the similarity of the triangles AJI and AED we
get

r

p− a
=
ρa
x

⇔ ρa =
r

p− a
· x.

In the triangle BDG, since ∠BGD = 90◦, we have

BD2 = BG2 +GD2 = (c− x)2 + ρ2
a.

In the triangle CED, since ∠CED = 90◦, we have

CD2 = CE2 + ED2 = (b− x)2 + ρ2
a.

Since the circle (D) and the semicircle of diameter BC are externally tangent, we
have DM = a

2
+ ρa. Then, using the median formula in triangle BCD we get

4 ·DM2 = 2 ·BD2 + 2 · CD2 −BC2 ⇔

4
(a

2
+ ρa

)2

= 2
(
(c− x)2 + ρ2

a

)
+ 2

(
(b− x)2 + ρ2

a

)
− a2 ⇔

x2 −
(
b+ c+

ar

p− a

)
x+

b2 + c2 − a2

2
= 0.(3)



24 Solution of problem 2023-1-6

Taking into account of Lemma 1, the discriminant of (3) equals to(
b+ c+

ar

p− a

)2

− 2
(
b2 + c2 − a2

)
=

(
a+

(b+ c)r

p− a

)2

.

Therefore the solutions of (3) are

x = p− a− r < p− a and x = p+
pr

p− a
> p− a.

Since E ∈ AJ and AJ = p− a we have AE < AJ , i.e. x < p− a. Hence we have

ρa =
r

p− a
· x =

r

p− a
(p− a− r) = r

(
1− r

p− a

)
= r

(
1− tan

A

2

)
.

The other case ∠BAC > 90◦ can be proved similarly, taking into account that
DM = a

2
− ρa because the circle (D) and the semicircle of diameter BC are

internally tangent (see Figure 4).

Figure 4.

�

Lemma 3. The numbers tan A
2

, tan B
2

, tan C
2

are the roots of the cubic

px3 − (4R + r)x2 + px− r = 0.

Proof. The numbers tan A
2
, tan B

2
, tan C

2
verify the equation(

x− tan
A

2

)(
x− tan

B

2

)(
x− tan

C

2

)
= 0 ⇔

x3 −
(∑

tan
A

2

)
x2 +

(∑
tan

A

2
tan

B

2

)
x−

∏
tan

A

2
= 0.(4)

Now, using the well known identities2∑
tan

A

2
=

4R + r

p
,

∑
tan

A

2
tan

B

2
= 1, tan

A

2
tan

B

2
tan

C

2
=
r

p
,

2See [2] pag.27, [1] pag. 358, [6] pag. 234, 237
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the equation (4) rewrites as

x3 − 4R + r

p
· x2 + x− r

p
= 0 ⇔

px3 − (4R + r)x2 + px− r = 0.(5)

�

Proof of Theorem 2.1. Let us first consider the case ∠BAC ≤ 90◦.
From Lemma 2 we get ρa = r

(
1− tan A

2

)
, hence tan A

2
= 1− ρa

r
.

Thus, using Lemma 3 we have that

p
(

1− ρa
r

)3

− (4R + r)
(

1− ρa
r

)2

+ p
(

1− ρa
r

)
− r = 0,

from which we get

p(r − ρa)3 − r(4R + r)(r − ρa)2 + pr2(r − ρa)− r4 = 0,

pρ3
a + r(4R + r − 3p)ρ2

a + 2r2(2p− 4R− r)ρa + 2r3(2R + r − p) = 0.

Therefore ρa and similarly ρb, ρc satisfy the equation

px3 + r(4R + r − 3p)x2 + 2r2(2p− 4R− r)x+ 2r3(2R + r − p) = 0.

Thus, using the Vieta’s formulas we obtain

(6) ρa + ρb + ρc =
r(3p− 4R− r)

p
,

and

(7)
∑

ρaρb =
2r2(2p− 4R− r)

p
,

from which it follows that

ρ2
a + ρ2

b + ρ2
c = (ρa + ρb + ρc)

2 − 2
∑

ρaρb(8)

=
r2(3p− 4R− r)2

p2
− 2 · 2r2(2p− 4R− r)

p

=
r2(p− 4R− r)2

p2
.

Finally, using (6), (7) and (8) and taking into account the inequality3 4R+ r > p,
we have

ρa + ρb + ρc +
√
ρ2
a + ρ2

b + ρ2
c =

r(3p− 4R− r)
p

+
r(4R + r − p)

p
= 2r.

so the formula (1) is proved.

Let us now consider the case where ∠BAC > 90◦.

From Lemma 2 we get ρa = r
(
tan A

2
− 1
)
, hence tan A

2
= 1 + ρa

r
. Thus, with a

reasoning similar to that used in case ∠BAC < 90◦, it can be shown that −ρa, ρb
and ρc verify the equation

(9) px3 + r(4R + r − 3p)x2 + 2r2(2p− 4R− r)x+ 2r3(2R + r − p) = 0.

3See [2], pag. 49
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Therefore by using the Vieta’s formulas we obtain

(10) − ρa + ρb + ρc =
r(3p− 4R− r)

p
,

(11) ρbρc − ρaρb − ρaρc =
2r2(2p− 4R− r)

p
,

(12) ρ2
a + ρ2

b + ρ2
c =

r2(p− 4R− r)2

p2

from which it follows that

(13) − ρa + ρb + ρc +
√
ρ2
a + ρ2

b + ρ2
c =

r(3p− 4R− r)
p

+
r(4R + r − p)

p
= 2r.

�

4. Construction of circle ωa

The construction of the circle ωa follows from the following theorem.

Theorem 4.1. For a triangle ABC, let ωa be the circle defined in Theorem 2.1.
Let I be the incenter of ABC and let J , E be the feet of the perpendiculars drawn
on AC from I and D, respectively. We have JE = JI.

Figure 5.

Proof. If ∠A < 90◦, from Lemma 2 we have DE = r
(
1− tan A

2

)
. Therefore

JE = AJ − AE =
r

tan A
2

− DE

tan A
2

=
r −DE
tan A

2

= cot
A

2

(
r − r + r tan

A

2

)
= r cot

A

2
tan

A

2
= r = JI.

If ∠A > 90◦ the proof is similar. �

The circle ωa can be constructed in the following way (see figures 5 and 6)):
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Figure 6.

• construct the incenter I of ABC;
• construct the point J , orthogonal projection of I on AC;
• construct the point E ∈ AJ such that JE = JI;
• let D be the intersection point of AI with the perpendicular to AC at E;
• draw the circle ωa with center D and radius DE.

The following corollary follows directly from theorem 4.1.

Corollary 4.1. Let ABC be a triangle, let D, E, F be the centers of ωa, ωb, ωc
respectively; let Ea, Fa be the feet of the perpendiculars drawn on BC from E and
F , respectively. Define Db, Fb and Dc, Ec cyclically. Then the six points Ea, Fa,
Db, Fb, Dc, Ec lie on a circle with center I and radius

√
2r. Furthermore we have

EaFa = DbFb = DcEc (see figures 7 and 8).

Figure 7.
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Figure 8.
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